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ABSTRACT: A nonlinear viscoelastic constitutive equa-
tion of glassy polymers has been developed on the basis of
the internal time and irreversible thermodynamics of inter-
nal variables. The constitutive equation is a generalization of
spring–dashpot models and describes the yield behavior of
glassy polymers. With this constitutive equation, the rate of
entropy production has been determined to show a peak
near the yield. We propose a new yield criterion, that yield

occurs at the maximum rate of entropy production. The
yield criterion is almost equivalent to that of peak stress and
a thermodynamic interpretation of yield. © 2003 Wiley Peri-
odicals, Inc. J Appl Polym Sci 89: 2400–2411, 2003

Key words: thermodynamics; viscoelastic properties; yield-
ing

INTRODUCTION

As the use of polymers as structural materials in-
creases, it becomes more important to describe the
mechanical behavior of solid polymers. Unlike metals,
solid polymers show complex mechanical behavior,
such as stress dependence on both the strain rate and
temperature and the stress at a fixed strain being
relaxed. In addition, the yield stress of a polymer
cannot be described by a simple criterion of von Mises
because the yield stress depends on both the strain
rate and temperature.

Various researchers1–9 have developed constitutive
equations for glassy polymers that can predict the
yield. Most theories are based on internal time, which
is the rescaling of time for normalizing the effects of
deformation and temperature. Some have employed
yield models of Eyring or Argon to specify the plastic
strain rate.5,8 Others have proposed a combination of
the concepts of internal time and linear viscoelastic-
ity.2–4,6

The works in this field by Knauss and Emri,4 Boyce
et al.,5 and Schapery7 are noteworthy. Although the
constitutive formulation developed in this article has a
form similar to that of Knauss and Emri, it has been
derived from a generalization of spring–dashpot
models with both internal time and irreversible ther-
modynamics. Although our theory shares a common
theoretical foundation with that of Schapery, strain is

used as one of the independent thermodynamic vari-
ables instead of stress.

Molecular approaches have also been used to de-
scribe yield mechanisms.10–15 They are not constitu-
tive equations but relations between the yield stress
and strain rate. We call them yield equations to dis-
tinguish them from constitutive equations. Although
Boyce et al.5 and Tervoort et al.8 developed constitu-
tive equations based on existing yield equations, Bern-
stein and Shokooh1 derived a yield equation from the
Kaye-Bernstein, Kearsely, Zapas (K-BKZ) constitutive
equation modified by the internal time of stress. This
article consists of two parts. The first part charts the
development of a nonlinear viscoelastic constitutive
equation based on irreversible thermodynamics that is
a generalization of linear viscoelasticity including the
internal time concept.1–4,6 The second part suggests a
thermodynamic interpretation of yield that results in a
yield equation derived from the constitutive equation.
The yield equation is expected to predict the yield
behavior of glassy polymers from stress–relaxation
experiments.

CONSTITUTIVE EQUATION THEORY

Linear viscoelasticity and thermodynamics

It is well known that a linear viscoelastic constitutive
equation can be derived from an analogy of the me-
chanical response of polymers to a combination of
mechanical elements such as springs and dashpots.
We adopt another methodology16 based on the irre-
versible thermodynamics of internal variables. Figure
1 is a schematic expression of the combination of
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mechanical elements. We define the free energy as the
strain energy stored in the spring elements:

f�e, qi, T� �
1
2 E0e2 �

1
2 �

i�1

N

Ei�e � qi�
2 (1)

where T is the temperature, e is the total strain, qi is the
strain of the ith dashpot, E0 and Ei are the moduli
corresponding to the spring elements in Figure 1, and
N is the total number of Maxwellian elements. From
the irreversible thermodynamics,16,17 stress is

� �
�f
�e � E0e � �

i�1

N

Ei�e � qi� (2)

The evolution equation of qi is suggested to be

dqi

dt �
Ei

bi
�e � qi� (3)

where bi is the viscosity of the ith dashpot. The meth-
odology gives results identical to those from the con-
ventional methodology with Laplace transform.

The front factor in eq. (3) denotes the inverse of the
relaxation time �i:

�i �
bi

Ei
(4)

Therefore, the real time t can be rescaled under the
assumption that all relaxation times have a common
factor �, that is, �i � �/�i. All relaxation times are
assumed to have a common temperature dependence,
which is equivalent to the principle of time–tempera-
ture superpositioning with a shift factor of the Arrhe-
nius type. We define the internal time z as

z�t� � �
0

t dt�
�

(5)

With the help of z, eq. (3) becomes

dqi

dt � �i

dz
dt �e � qi� N

dqi

dz � �i�e � qi� (6)

where

�i �
�

�i
�assumed to be constant�

The introduction of z with the associated assumption
gives a mathematical form of the principle of time–
temperature superpositioning when the relaxation
time � is a function of temperature.

The basic formulations of irreversible thermody-
namics of internal variables17 state that the rate of
entropy production is

T
dsin

dt � ��
i�1

N
�f
�qi

dqi

dt � 0 (7)

where sin is the entropy produced by the inherent
irreversibility of the system and not by the flux of
entropy from the surroundings. A more detailed ren-
dering of eq. (7) is

��
i�1

N
�f
�qi

dqi

dt � �
i�1

N

Ei�e � qi�
dqi

dt (8)

The rearrangement of eq. (3) yields

e � qi � �i

dqi

dt (9)

The substitution of eq. (9) into eq. (8) and the defini-
tion of the relaxation time �i in eq. (4) yield

��
i�1

N
�f
�qi

dqi

dt � �
i�1

N

bi�dqi

dt �
2

� 0 (10)

Equation (10) shows that the evolution [eq. (3)] satis-
fies the second law of irreversible thermodynamics
[eq. (7)].

Generalization of linear viscoelasticity

It is well known that the linear viscoelastic model
cannot describe the mechanical characteristics of real
solid polymers, such as the yield, strain softening, and
strain hardening. Therefore, we should generalize the

Figure 1 Mechanical model of a linear viscoelastic mate-
rial.
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methodology to describe the mechanical behavior. We
generalize the relaxation times as functions of temper-
ature and deformation. Many researchers1–9 have used
this concept. In the stress-clock model, the relaxation
time is a function of stress, whereas strain is a variable
for the relaxation time in the strain-clock model. The
stress-clock and strain-clock models yield time–stress–
temperature and time–strain–temperature superposi-
tioning, respectively.

Because Hookian springs in Figure 1 cannot realis-
tically describe the stress relaxation at a fixed strain
larger than the yield strain, nonlinear springs are cho-
sen. Therefore, we suggest a free energy such that

f�e, qi, T� � fE�e, T� � fI�e, qi, T� (11)

where

fI�e, qi, T� �
1
2 �

i�1

N

Biqi
2 � �

i�1

N

Ciqie (12)

A detailed form of fE should be determined by exper-
iments (e.g., stress relaxation). We assume that the
moduli Bi and Ci are independent of e and qi and are
functions of temperature.

The viscosity of a polymeric fluid depends on the
strain rate. It may be reasonable that a possible math-
ematical form of the viscosity is

bi�e, ė, T� �
b� i�e, T�

1 � ��ė�/ė�0�
n

(13)

where the dot over e represents differentiation with
respect to real time, �bi(e,T) is a function of strain and
temperature, ė�0 and n are material constants. There-
fore, a generalized evolution equation corresponding
to eq. (6) may be

dqi

dt �
�i

��e, T�
�e � qi� (14)

It is noteworthy that �i need not be assumed to be
constant in the generalization. The new version of eq.
(8) is

��
i�1

N
�f
�qi

dqi

dt � ��
i�1

N

Biqi

dqi

dt � �
i�1

N

Cie
dqi

dt (15)

and eq. (9) becomes

qi � e �
��e, T�

�i

dqi

dt (16)

In a similar way, we obtain

��
i�1

N
�f
�qi

dqi

dt � ��
i�1

N ��Bi � Ci�e
dqi

dt � Bi

��e, ė, T�

�i
�dqi

dt �
2�

(17)

Because the rate of entropy production must not be
negative, we assume that Bi � Ci for all i. An analogy
to eq. (10) gives

Bi

�i
��e, T� �

b� i�e, T�

1 � ��ė�/ė�0�
n

(18)

Because Bi is assumed to be independent of the strain
and strain rate, we define �i as

�i � �� i�1 � ��ė�/ė�0�
n� (19)

where �� i is constant. We suggest a new internal time:

z�t� � �
0

t

�1 � ��ė�/ė�0�
n�

ds
��e, T�

(20)

Parsimony of material parameters with the
Kohlrausch-Williams-Watts (KWW) model

The formulations in the previous section demand the
information of the relaxation time distribution, which
requires complex procedures of data processing. In
addition, the formulations of the multimode model
restrict the capability of calculating various quantities
in a closed form. For greater mathematical simplicity,
we again define another internal time 	(t), which in-
cludes the information of the relaxation time distribu-
tion:

	�t� � z
�t� (21)

where the exponent 
 corresponds to that of the KWW
model.18,19 When we discuss stress relaxation, the
meaning of 
 will appear. By this definition of internal
time, we can construct a new and simpler model of a
single mode. The free energy in the previous sections
becomes

f�e, Q, T� � fE�e, T� � fI�e, Q, T� (22)

where Q is a new internal strain and

fI�e, Q, T� �
1
2 BQ2 � BQe (23)

The evolution equation becomes

dQ
dt � �

d	

dt �e � Q� (24)
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where � is constant. The viscosity becomes

b�e, ė, T� �
B
� �d	

dt�
�1

(25)

The calculation of stress can be performed in a way
similar to that before. If the strain rate is constant and
the initial values of the strain and internal strain are
zero, then a more detailed expression of stress is

��t� � ��E�e�t�� � Bė �
0

t

e���	�t��	�s�� ds (26)

where

��E�e�t�� �
�fE

�e �e�t�, T� � Be�t� (27)

is equivalent to the fully relaxed stress at a fixed strain
e. In addition, it is noteworthy that

Q�t� � e�t� � �
0

t

e���	�t��	�s��
de
ds �s� ds (28)

A detailed procedure for obtaining eq. (26) is shown in
the appendix.

Determination of the material parameters

To determine the material parameters, we need exper-
imental data for the stress–relaxation and stress–strain
curves. Stress–relaxation measurements have to be
performed at various strains and temperatures. The
measurement of stress–strain curves should be ob-
tained at a constant strain rate with various tempera-
tures and strain rates. To determine the parameters,
we used the stress–relaxation values and stress–strain
curves of unplasticized poly(vinyl chloride) (PVC)
measured by Povolo et al.19 Because the data are not
sufficient for determining the parameters of our
model, we introduce some assumptions to compen-
sate for the lack of data.

The formulations for stress relaxation can be ob-
tained by the constitutive equation with appropriate
initial conditions. The result is

	�t� �
��t� � ��
�

��0� � ��
�
� exp���	�t�� (29)

where �(t) is the stress at time t, �(
) is the fully
relaxed stress equivalent to ��E(�e), �e is a fixed ap-
plied strain, and �(0) is the initial stress. We call 	(t)
the relaxation function. The internal time in the relax-
ation experiment becomes

	�t� � � t
��e� , T��




(30)

under the assumption that the applied strain is fixed
and the effect of the previous deformation history on
the internal variable Q is negligible. Most material
parameters are determined with eqs. (29) and (30) and
the experimental data measured at various tempera-
tures and applied strains. A procedure for obtaining
eq. (29) is given in detail in the appendix. Although
most parameters are determined by stress relaxation,
we need the data of stress–strain curves to determine
B and the dependence of the internal time on the strain
rate. The internal time in the tensile experiment at a
constant strain rate is

	�t� � �
�ė��
�e�t�� (31)

where

��ė� �
1 � ��ė�/ė�0�

n

ė (32)

��e� � �
0

e d


��
, T�
(33)

Equation (31) can easily be derived from eqs. (20) and
(21). Note that

z�t� � �1 � ��ė�/ė�0�
n� �

0

t ds
��e, T�

�
1 � ��ė�/ė�0�

n

ė �
0

e d


��
, T�
�at constant strain rate�

From tensile experiments at various strain rates and
eqs. (26) and (32), we can determine the values of ė�0, n,
and B.

To simplify the problems, we suggest a mathemat-
ical form of the relaxation time �(e,T). Although there
may be various possible forms of relaxation time4,6

�(e,T), we suggest

ln ��e, T� �
�E

RT � W�e, T�
(34)

where

W�e, T� � 1
2 T�e2 (35)

R is the gas constant, �E is the activation energy, and
� is the material constant. Equation (34) means that
mechanical perturbation in the disordered structure
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physically has an effect similar to that of thermal
energy. The values in Table I were determined by the
data of Povolo et al.19

Because their relaxation data were measured at the
strains below the yield point, the following approxi-
mation of the fully relaxed stress is introduced to
compensate for the lack of data:

��E�e� 	 GEeF�1 � exp��
e
eF
�� (36)

where

eF �
�F

GE
(37)

�F is the plateau stress denoted in Figure 2, and GE is
the initial slope of the fully relaxed stress determined
by the data of stress relaxation. �F is determined by
the average stress over a range of strains for which the

TABLE I
Material Parameters

Parameter Value Remarks

� 2.870 � 102 Determined by relaxation data

 4.955 � 10�1 Determined by relaxation data

�E/R 3.281 � 103 K Determined by relaxation data
�/R 2.055 � 102 Determined by relaxation data
GE (273K) 1.316 � 103 MPa Determined by relaxation data
� 1.579 � 103 Determined by relaxation data
� 4.017 � 101 Determined by relaxation data

��1 � �ė/ė�0�
n

ė
�


8.9 � 104 Determined by stress–strain data

dB
dT

9.185 MPa K�1 Determined by stress–strain data

B(T) �
dB
dT

T �1.881 � 103 MPa Determined by stress–strain data
n 0.7 Assumed
ė�0 1.544 � 10�6 s�1 Calculated by assumed n

Figure 2 Schematic diagram of the fully relaxed stress: (A) linear viscoelastic behavior, (B) plastic flow, and (C) strain
hardening. The total stress reduces to the fully relaxed stress by relaxation when the strain remains constant after loading.
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variation of stress is small after the yield strain. The
values of �F determined by the experimental data of
Povolo et al.19 are listed in Table II. The modulus GE

should be a function of temperature, the dependence
of which may be described by

GE�T� 	
� � 1

� � �T/TR�� GE�TR� (38)

where TR is the reference temperature and � and � are
the parameters to be determined by the fitting of ex-
perimental data.

Figure 3 shows the regression results of eq. (29).
With the help of the regression, we can determine �,
�E, 
, �, �(
), �(0), �, �, and GE(TR) at TR � 273 K.
Figure 4 shows the initial modulus of the fully relaxed

stress determined by the regression of Figure 3. Figure
5 shows the regression results of eq. (38), which show
that eq. (38) is a good approximation. Because our
theory is based on the theory of internal time, time–
strain–temperature superpositioning is presented
(Fig. 6).

Figure 7 shows a comparison between the experi-
mental data of the stress–strain curves19 and our the-
ory. Some deviations may be due to the insufficient
data, the limit of the KWW distribution, and the as-
sumed initial condition of Q(0) � 0. Because Povolo et
al.19 did not measure the stress–strain curves at vari-
ous strain rates, we assume that the exponent n in eq.
(32) is equal to 0.7. With this value, the regression
results of eq. (32), and the experimental condition of
Povolo et al.19 (ė � 6.6 � 10�4 s�1), we can determine
the value of ė�0, which is listed in Table I.

From a complete set of determined parameters, we
have drawn Figure 8, which shows the effect of the
strain rate on the stress–strain curve. Figure 8 shows a
realistic behavior of the yield strain varying with the
strain rate. The realistic effect of the temperature on

TABLE II
Plateau Stress

Temperature (K) 301 313 324 332 343

�F (MPa) 44.0 39.0 31.0 26.7 18.0

Figure 3 Stress–relaxation curves for unplasticized PVC. The experimental data were obtained from in Povolo et al.19 The
solid curves were calculated with eq. (29).
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the yield strain is also presented in Figure 7. Because
the approach in this work allows various modifica-
tions, appropriate modifications in the mathematical
forms, such as the fully relaxed stress of eq. (36), are
expected to reduce the deviation that appears after the
yield (Fig. 7). The modulus B is linearly proportional
to temperature and is similar to that of the modulus of
rubber (Fig. 9). It shows a linear proportionality to
temperature. If we interpret the physical meaning of
the internal strain Q as a representation of microscopic
random motions of polymer segments, the tempera-
ture dependence of B seems to be attributable to en-
tropy, and this agrees with the fact that the rate of
entropy production is the quadratic function of the
rate of Q.

YIELD MECHANISM

Among various theories on the yield,10,12,13 our rea-
soning on the yield mechanism begins with a consid-
eration of Robertson’s theory12 because his theory con-
tains more fluent molecular meaning than others. The
theory states that the fraction of high-energy molecu-

Figure 4 Fully relaxed stress versus the applied strain. The data were obtained from the regression analysis of the initial
slopes at various temperatures (GE) correspond to the relaxed moduli of linear viscoelasticity.

Figure 5 Approximation of GE as a function of tempera-
ture. The regression line was obtained with eq. (38). The
reference temperature is 273 K.
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lar conformation becomes that of the glass transition
as the deformation approaches a yield point.

Experimental works20,21 have shown evidence of
Robertson’s theory by measuring the fraction of the

conformation during deformation. IR data show a
peak-shaped fraction as a function of strain. The frac-
tion of the high-energy conformation increases before
the yield and decreases after the yield. The fraction of
the molecular conformation must be related to the
segment configuration of polymer chains. Here, we

Figure 6 Time–strain–temperature superpositioning. Relaxation function 	 of eq. (29) is replotted against internal time 	.

Figure 7 Stress–strain curves for unplasticized PVC at var-
ious temperatures. The experimental data were obtained
from Povolo et al.19 The regression curves were calculated
with eq. (26). The strain rate is 6.6 � 10�4 s�1.

Figure 8 Effect of the strain rate on the stress–strain curve
for unplasticized PVC. The data were calculated with eq.
(26). The temperature is 313 K.
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use the word configuration to indicate the spatial ar-
rangement of the segments. Changes in the configu-
ration give rise to those in thermodynamic functions,
such as entropy and internal energy. Before the yield,
the solid polymer behaves elastically because there is
no large change in the configuration of the segments.
Near the yield point, however, there may be great
changes in the configuration. After the yield, a process
of alignment of the polymer chains occurs, which
increases the order of the structure to reduce micro-
scopic random motions of the segments to some ex-
tent.

We can guess that a scalar quantity attributed to the
random motions should show a peaklike shape when
we plot it against the deformation because the fraction
of conformation of polymers shows a peak when it
deforms.20,21 The entropy must not be the quantity
because it monotonically increases as deformation
proceeds. A possible candidate may be the rate of
entropy production. Jang and Jo22 performed a com-
puter experiment using molecular mechanics in the
study of the plasticity of solid polymers. They found
that the derivative of the entropy with respect to the
strain shows a peak near the yield point. Because the
algorithm used in the molecular mechanics does not
contain any time effect, the strain represents an inter-
nal time induced by deformation. Therefore, the de-
rivative of entropy may correspond to the rate of
entropy production in this study. From IR measure-
ments20,21 and computer simulation,22 we have tried
to determine whether the rate of entropy production
of our theory shows a peak near the yield. Figure 10
shows that the rate of entropy production has a peak
near the yield point.

Although how to define the yield from a stress–
strain curve is controversial, it may be reasonable to

define the yield as the first local maximum of the
stress. Because the definition of the yield as a peak
stress is widely accepted, we have to compare it with
the maximum rate of entropy production, the new
definition of the yield. Two yield equations are de-
rived from the two yield conditions, the extremum of
stress and the maximum rate of entropy production.

Yield equation from the maximum stress

The yield defined as the maximum stress can be ex-
pressed under the constant strain rate as

d�

dt �
�2fE

�e2 ė � B
dQ
dt � 0 �at yield� (39)

Figure 10 Variation of the rate of entropy production with
the strain rate and temperature.

Figure 9 Temperature dependence of inelastic modulus B.
The data were obtained from the analysis in Figure 7.
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Substituting the evolution into eq. (39) yields

�2fE

�e2 ė � �B
d	

dt �e � Q� �at yield� (40)

Because our constitutive equation is

� �
�fE

�e � BQ N Q �
1
B ��fE

�e � �� (41)

we obtain

e � Q � e �
1
B ��fE

de � �� �
1
B �� � ��E� (42)

Substituting eq. (42) for the yield point into eq. (40)
and rearranging it, we obtain

�Y � ��E�eY� �
��2fE/�e2�eY

��d	/dt�eY

ė (43)

Because we have assumed a constant strain rate, the
derivative of the internal time is

d	

dt � 
z
�1
dz
dt � 
���ė���e��
�1

��ė�ė
��e, T�

(44)

Substitution of eq. (44) into (43) gives

�Y � ��E�eY� �
��2fE/�e2�eY��eY���eY, T�

�
���ė���eY��
 (45)

Yield equation from the maximum rate of entropy
production

If we combine eqs. (7), (12), and (42) in an appropriate
way, the rate of entropy production is

T
dsin

dt �
�

B
d	

dt �� � ��E�
2 (46)

The condition of the maximum rate of entropy pro-
duction at a constant strain rate can be written as

d
dt �T

dsin

dt � � 0 (47)

or

d2	

dt2 �� � ��E� � 2
d	

dt �d��E

dt �
d�

dt � (48)

Because

d�

dt �
�2fE

�e2 ė � B
dQ
dt �

�2fE

�e2 ė � �
d	

dt �� � ��E� (49)

and

d��E

dt �
�2fE

�e2 ė � Bė (50)

we have

d��E

dt �
d�

dt � �
d	

dt �� � ��E� � Bė (51)

The substitution of eq. (51) into (48) and a suitable
rearrangement would yield

� � ��E �
2B	̇ė

2�	̇2 � 	̈
(52)

With the help of eqs. (21) and (44), we have

d2	

dt2 � 
�
 � 1�z
�2�dz
dt�

2

� 
z
�1
d2z
dt2 (53)

d2z
dt2 � �

��ė�ė2

�2�e, T�

���e, T�

�e (54)

2B	̇ė

2�	̇2 � 	̈
�

2B
�2�
���ė���e, T��
 � �
 � 1��

� ���e, T���e, T���1 �
� ln ��e, T�

�e

(55)

Finally, eq. (52) can be rewritten as

�Y � ��E�eY� �
2B��eY, T���eY, T�

2�
���ė���eY, T��
 � �
 � 1�
� ��eY, T���eY, T��� ln ��e, T�/�e�eY

(56)

It is noteworthy that eY is the strain at the maximum
rate of entropy production in this section.

Comparison of the yield criteria

Figure 11 shows measured and calculated yield
stresses of eqs. (45) and (56). The measured yield
strain at the peak stress and the strain at the maximum
rate of entropy production were used for the calcula-
tion of eqs. (45) and (56), respectively. Although both
eqs. (45) and (56) give good correlations with the
experimental data, there exists an inconsistency be-
tween the strain at the maximum rate of entropy pro-
duction and the measured yield strain. Of course, it is
difficult to directly measure the former through exper-
iments. We can determine the strain by an indirect
method in which the strain is calculated with the
parameters determined by relaxation and stress–strain
curves. Figure 12 shows the plot of the measured yield
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strain versus the strain at the maximum rate of en-
tropy production. There is a considerable discrepancy
that shows that the two strains are not identical.

From the schematic diagram in Figure 2, we expect
an energetic contribution to the yield because the fully
relaxed stress changes drastically near the yield. Al-
though a complete set of data is necessary for our
theory to analyze the validity of the yield criterion of
the entropy production rate in a more detailed form,

Figure 11 suggests a new insight into the yield mech-
anism.

Equations (45) and (56) contain the term represent-
ing the effect of the strain rate, �(ė). The experimental
and theoretical results of Rusch and Beck23 state that
the yield strain depends on the strain rate and tem-
perature. Our model can describe such dependencies
of the yield strain at the maximum stress.

If ��E(e) varies sufficiently little in the neighbor-
hood of the yield strain, the effect of the strain rate on
the yield stress depends mainly on ��
(ė). Figure 13
shows the plot of ��
(ė) versus the strain rate. The
behavior of ��
(ė) can be seen as a modified Eyring
equation.11

CONCLUSIONS

We have developed a nonlinear viscoelastic constitu-
tive equation by the generalization of linear viscoelas-
ticity based on the internal time and irreversible ther-
modynamics. The constitutive equation gives new in-
sight into the yield mechanism, indicating that the
yield occurs when the rate of entropy production be-
comes maximum. The yield of glassy polymers con-
tains both the energetic contribution represented by
fully relaxed stress and the entropic one represented
by internal strain Q and internal time. Our model
shows that the new yield condition is equivalent to the
conventional one in many respects and is confirmed
by a comparison with the experimental data.

Figure 11 Comparison of the calculated yield stress and
the measured yield stress: (A) the calculation of eq. (45), for
which the yield strain is used as the strain at maximum
stress, and (B) the calculation of eq. (56), for which the yield
strain is used as the strain at the maximum rate of entropy
production.

Figure 12 Plot of the measured yield strain versus the
strain at the maximum rate of entropy production.

Figure 13 Main effect of the strain rate on the yield stress
of eqs. (45) and (56). The parameter n is equivalent to the
exponent of the viscosity of the power-law fluid. n � 0
means Newtonian dashpot, and n � 1 indicates rate-insen-
sitive materials such as metals. We have chosen n � 0.7.
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APPENDIX

Derivation of eq. (26)

We define the initial conditions as follows:

e�0� � 0, Q�0� � 0 (A.1)

The evolution of eq. (24) in terms of the internal time
is

dQ
d	

� ��e � Q� (A.2)

The integration of eq. (A.2) with the initial conditions
of eq. (A.1) yields

Q�	� � �
0

	

e���	�x�e�x� dx (A.3)

The application of integration by parts gives eq. (28):

Q�	�t�� � e�	�t�� ��
0

	�t�

e���	�t��	�s��
de�	�s��
d	�s� d	�s� (28)

Because irreversible thermodynamics states that

� �
�f
�e �

�fE

�e � BQ (A.4)

the substitution of eq. (24) into eq. (A.4) yields eq. (26)
under the assumption of a constant strain rate.

Derivation of eq. (29)

In the stress–relaxation experiment, the initial value of
Q is not zero because of previous loading. If we main-
tain a fixed strain after stopping the loading process,
the initial conditions will be

e�0� � e0 �constant�, Q�0� � Q0 � 0 (A.5)

where we set time t � 0 when we stop the loading and
begin observation. The integration of eq. (A.2) with the
initial conditions of eq. (A.5) and a zero strain rate
yield

Q�	�t�� � e��	�t�Q0 � � �
0

	�t�

e���	�t��	�s��e0 d	�s�

� e��	�t�Q0 � e0�1 � e��	�t�� (A.6)

The substitution of eq. (A.7) into eq. (A.4) gives

��	�t�� �
�fE

�e �e0� � Be��	�t�Q0 � Be0�1 � e��	�t��

(A.7)

Note that the initial stress is

��	�0�� � ��0� �
�fE

�e �e0� � BQ0 (A.8)

because 	(0) is 0. At infinite time, the stress becomes

��	�
�� � ��
� �
�fE

�e �e0� � Be0 (A.9)

because the internal time is a monotonically increasing
function of the real time. The rearrangement of eq.
(A.7) gives eq. (29).
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